Thin-Film NiP Embedded Resistor Reliability in Military/Aerospace Applications By Bruce P. Mahler, Ohmega Technologies, Inc. And Brigitte Lawrence, Brigitflex, Inc.

JEDEC G-11 Conference Columbus, Ohio September 23, 2009

Embedded Passives (Resistors/Capacitors) in PCB's

Advantages of Embedded Resistors

Electrical Advantages

Improved line impedance matching Shorter signal paths and reduced series inductance Reduced cross talk, noise and EMI

PCB Design Advantages

Increase active component density and reduced form factors Improved routing due to elimination of vias Board simplification, size reduction and/or densification

Improved Reliability

Low RTC of < 50 PPM Life testing: 100,000 hours < 2% drift at 110°C Stable over wide frequencies: tested beyond 40 GHz Elimination of solder joints Testing at inner layer and bare board stage

NiP Resistive Material

PCB Processing of the NiP Resistor Alloy

Embedded Resistor Testing

- Electrical testing is required to verify correct resistor values and identify out-of-tolerance resistors
- All resistors should undergo electrical testing at the inner layer and bare board stage to assure resistor tolerances and facilitate failure analysis.
- AOI is not a substitute for inner layer electrical test
- Standard electrical test equipment is utilized

Universal bare board tester (bed-of-nails with fixture) Flying probe tester (fixtureless) NiP embedded resistors are created using standard print-and etch Processes and eliminate the need for discrete resistor placement and attachment.

Standard PCB print and etch process controls and IPC Specs apply to embedded resistors. Soldering process controls and specifications due not apply to embedded resistors.

In Military/Aerospace and other critical applications, elimination of the discrete resistor solder joints improves reliability and yields.

PROPERTIES AND	Remark and Condition					
Sheet Resistivities	10	25	50	100	250	
Material Tolerance	+/-3	+/-5	+/-5	+/-5	+/-10	
Load Life Cycling Test (ΔR%)	<0.3 (after 1087 hrs)	<5	<5	<5	0.5 (after 1000 hrs)	Ambient Temp: 70C On Cycle: 1.5 hrs Off Cycle: 1.5 hrs Length Of Test: 10000 hrs
Current Noise Index in dB	<-16	<-15	<-15	<-15	<-15	Voltage Applied: 10 ohm/sq.: 53.2V 25 ohm/sq.: 5.6V, 100 ohm/sq.: 7.9V
Short Time Overload (A R%)	0	0	0	0	0	Power:2.5 X Rated Time: 5 sec
Resistance Temperature Characteristic(RTC) PPM/°C	20	50	60	100	100	Hot Cycle: 25°, 50°,75° 125°C Cold Cycle: 25°, 0°,-25°, -55°C

PROPERTIES AND	Remark and Condition					
Sheet Resistivities	10	25	50	100	250	
Humidity Test (∆ R%)	0.3	0.5	0.75	1	2	MIL-STD-202-103A Temp: 40 °C Relative Humidity: 95% Time: 240 hrs
Thermal Shock (Δ R%)	0.1	-0.5	1.0	1.0	1.0	MIL-STD-202-107B No of Cycles: 25 Hot Cycle Temp: 125 °C Cold Cycle Temp: -65 °C
Hot Oil (Δ R%)		0.1	0.25	0.5	0.75	IPC-TM-650 METHOD 2.4.6 Temp: 260°C Immersion: 20°C
Solder Float (Δ R%)	0.2	0.5	0.75	1.0	0.5	MIL-STD-202-210D Temp: 260°C Immersion: 20 Second
Resistance to Solvent (Δ R%) Toluence 1-1-1: Trichloroethan: Acetone: Freon:	N/A	0.2 0.0 0.2 0.0	N/A	N/A	N/A	MIL-STD-202-215A Immersion: 15 mins
Capacitance(pF) (at 5 Hz)	~0	~1	~1	~1	~1	
Inductance (nH) (at 5 Hz)	<~0.6	<~0.6	<~0.6	<~0.6	<~0.6	

<u>Alcatel</u>

Researchers at Alcatel tested NiP resistors for broadband (45 MHz-5 GHz) telecom applications to compare the reliability of NiP resistors to 0805 discrete chip resistors rated at 125 mW. The NiP resistors were as good as, or better than, the chip resistors in all performed tests.

Type of Test	Measured max./min. ∆R	Ohmega Specifications	Thick film chip R (0805)	
	(Alcatel Tested)			
Humidity Test	After 21 days:	After 10 days:	After 56 days:	
Temp: 40 °C	0.22% for 25 Ohm/sq.	0.5% for 25 Ohm/sq.	$\leq \pm 1.5\%$	
Relative Humidity: 93%	0.07% for 100 Ohm/sq.	1.0% for 100 Ohm/sq.		
	0.10% for 250 Ohm/sq.			
	After 56 days:			
	0.74% for 25 Ohm/sq.			
	0.14% for 100 Ohm/sq.			
	0.22% for 250 Ohm/sq.			
Thermal Cycling	After 100 Cycles	After 25 Cyles		
Hot Cycle Temp: 125 °C	- 0.03 % for 25 Ohm/sq.	- 0.5% for 25 Ohm/sq.		
Cold Cycle Temp: -25 °C	0.03 % for 100 Ohm/sq.	1% for 100 Ohm/sq	\leq \pm 25%	
	- 0.08 % for 250 Ohm/sq.			
Aging Wihout Load	After 100 Hrs.			
Тетр: 125 °С	0.10% for 25 Ohm/sq	Not specified	Not specified	
	0.08% for 100 Ohm/sq			
	- 0.13% for 250 Ohm/sq			
Solder Heat/Float	- 0.02% for 25 Ohm/sq	0.5% for 25 Ohm/sq		
Тетр: 260 °С	0.01% for 100 Ohm/sq	1% for 100 Ohm/sq	$\leq \pm 25\%$	
Immersion: 20 sec	- 0.01% for 250 Ohm/sq			

Alcatel Design-Inner Layer of an MLB

Termination and pull-up resistors in an ATM switching card.

Dassault (Thales)

Dassault Electronique did a 2 year study of the NiP resistive material for an active phased array antenna (X-band). The resistors were used in a stripline configuration on a PTFE substrate. The NiP material was compared to chip resistors and screen printed polymer inks. The NiP material was selected for use due to superior tolerance and stability (compared to printed polymer inks) and space saving, parasitic reduction, and solder joint removal (compared to chip resistors). The results of testing are as follows:

Etching Tolerance	Minimum Resistor Width	Tolerance After Fusion Bonding	Influence of Ohmega- Ply Foil Layer on Microwave Properties	Shift of Resistor Values After 500 Thermal Cyles (-55° C,+125° C)	Thermal Coefficient of Resistance Within the Range (-55°C, +125°C)	Power Handling	No shift in microwave performance of two ports power divider, when Ohmega Foil Technology is tested under the following conditions:
5%	200 µm	7%	NO	Microstrip: +2% Stripline: +3%	Microstrip: ± 6% Stripline: ± 7%	300 mW	 500 thermal cycles 55° C, +125° C) 500 hours at 125° C 40 days 40° C, 95% RH 48 hours salt spray

Enlargement of a four-up array 16-way power divider with 50 Ω/\Box OhmegaPly[®] resistors

Military/Aerospace Organization

Highly Accelerated Thermal Shock Test (HATS)

	CHANGE IN RESISTANCE AFTER 1000 CYCLES							
Resistor Network	% change in Resistance	Test Result	Test Condiltion					
1	0.20	Pass	15 Coupons Per Resistor Network					
2	0.15	Pass	Total Cycle Time: 10.85 minutes					
3	0.20	Pass	High Temperature: +145 C					
4	0.17	Pass	Low Temperature: -40 C					
			High Temperature Extended Dwell Time: 0.25 minutes					
			Low Temperature Extended Dwell Time: 0.25 minutes					

Pull-Up/Pull-Down resistors in a missile control circuit board

▲ Mars Express orbiter

▲ Beagle 2 Lander with instruments on its robotic arm

▲ X-Ray Spectrometer (XRS) with Ohmega-Ply[®] resistors

▲ X-Ray Spectrometer with cover to measure the elements in rocks

▲ Ohmega-Ply[®] resistors in electronic lander PC board

Top view of PAW (position adjustable workbench)

Embedded NiP Resistors in ESA Mars Express Beagle 2 Lander

NiP Resistors Embedded in DRAM PCB – FR4 Dielectric for Lead-Free Assembly

▲ NiP Resistors on Inner Layer of DRAM Design

NiP Resistors

▲ Enlargement of Above Design

Application of NiP Resistors on a Lead-Free Substrate

- Resistive stability after solder float ($\%\Delta R$)
- Thermal stress test-to-failure.
- Compare FR4 to a "Lead-Free" laminate.
- Test at T260 20 seconds versus T288 10 seconds.
- Preconditioning; baking versus no-baking
- Failure means resistor becomes unstable or open.
- The result was that the lead-free laminate was clearly superior at T288. Surviving 25 cycles.

SUBSTRATE	% ∆ R AT	% \AR AT	% \AR AT	% ∆ R AT	% ∆ R AT	% \R AT	% \R AT	TEST METHOD	CONDITION
	1 CYCLE	2 CYCLE	5 CYCLE	10 CYCLE	15 CYCLE	20 CYCLE	25 CYCLE		
FR-4	-0.36	-0.47	-0.47					T260. 20 sec	no bake
Lead Free	-0.57	-0.58	-0.62	-0.54	-0.24	-0.13	-0.08	T288, 10 sec	5 hr bake
Lead Free	-0.27	-0.37	-0.46	-0.27	-0.16	0.17	0.26	T288, 10 sec	no bake
FR-4	-1.39	open						T288, 10 sec	5 hr bake
FR-4	-1.25	open						T288, 10 sec	no bake

Memory board, 10 layers with one layer of 22 ohm resistors, 23 mils x 10 mils. Built using Double Treat 1/2A50ohm NiP resistive material.

The FR-4 PCB used a standard multifunctional epoxy laminate.

The "lead-free" PCB used a phenolic-cured laminate.

Testing per IPC-TM-650, Method 2.4.13.1, baking was performed at 125 dC.

Embedded Resistor stability is an indicator of the PCB structural integrity

IPC specifications for embedded passives has been in development for a number of years. These are:

•IPC-4902, Specifications for Materials for Embedded Passive Devices for Printed Boards

•IPC-2227, Sectional Design Standards for Boards Utilizing Embedded Passive Devices

•IPC-4821 Specification for Embedded Passive Device Capacitor Materials for Rigid and Multilayer Printed Boards

•IPC-4811 Specifications for Embedded Passive Device Resistor Materials for Rigid and Multilayer Printed Boards

- Thin-Film NiP resistors have been successfully used in Military/Aerospace applications for over 35 years
- Extensive testing has been performed to prove the reliability of NiP resistors in Military/Aerospace applications
- Design and Test Standards for embedded passives are currently under development by IPC